Topic:Scene Graph Generation
What is Scene Graph Generation? Scene graph generation is the process of creating structured representations of scenes that capture the relationships between objects.
Papers and Code
Sep 26, 2025
Abstract:Healthcare robotics requires robust multimodal perception and reasoning to ensure safety in dynamic clinical environments. Current Vision-Language Models (VLMs) demonstrate strong general-purpose capabilities but remain limited in temporal reasoning, uncertainty estimation, and structured outputs needed for robotic planning. We present a lightweight agentic multimodal framework for video-based scene understanding. Combining the Qwen2.5-VL-3B-Instruct model with a SmolAgent-based orchestration layer, it supports chain-of-thought reasoning, speech-vision fusion, and dynamic tool invocation. The framework generates structured scene graphs and leverages a hybrid retrieval module for interpretable and adaptive reasoning. Evaluations on the Video-MME benchmark and a custom clinical dataset show competitive accuracy and improved robustness compared to state-of-the-art VLMs, demonstrating its potential for applications in robot-assisted surgery, patient monitoring, and decision support.
* 11 pages, 3 figures
Via

Sep 26, 2025
Abstract:The ability of robots to interpret human instructions and execute manipulation tasks necessitates the availability of task-relevant tabletop scenes for training. However, traditional methods for creating these scenes rely on time-consuming manual layout design or purely randomized layouts, which are limited in terms of plausibility or alignment with the tasks. In this paper, we formulate a novel task, namely task-oriented tabletop scene generation, which poses significant challenges due to the substantial gap between high-level task instructions and the tabletop scenes. To support research on such a challenging task, we introduce MesaTask-10K, a large-scale dataset comprising approximately 10,700 synthetic tabletop scenes with manually crafted layouts that ensure realistic layouts and intricate inter-object relations. To bridge the gap between tasks and scenes, we propose a Spatial Reasoning Chain that decomposes the generation process into object inference, spatial interrelation reasoning, and scene graph construction for the final 3D layout. We present MesaTask, an LLM-based framework that utilizes this reasoning chain and is further enhanced with DPO algorithms to generate physically plausible tabletop scenes that align well with given task descriptions. Exhaustive experiments demonstrate the superior performance of MesaTask compared to baselines in generating task-conforming tabletop scenes with realistic layouts. Project page is at https://mesatask.github.io/
* Accepted by NeurIPS 2025; Project page: https://mesatask.github.io/
Via

Sep 26, 2025
Abstract:Chain-of-Thought (CoT) prompting improves reasoning in large language models (LLMs), but its reliance on unstructured text limits interpretability and executability in embodied tasks. Prior work has explored structured CoTs using scene or logic graphs, yet these remain fundamentally limited: they model only low-order relations, lack constructs like inheritance or behavioral abstraction, and provide no standardized semantics for sequential or conditional planning. We propose UML-CoT, a structured reasoning and planning framework that leverages Unified Modeling Language (UML) to generate symbolic CoTs and executable action plans. UML class diagrams capture compositional object semantics, while activity diagrams model procedural control flow. Our three-stage training pipeline combines supervised fine-tuning with Group Relative Policy Optimization (GRPO), including reward learning from answer-only data. We evaluate UML-CoT on MRoom-30k, a new benchmark of cluttered room-cleaning scenarios. UML-CoT outperforms unstructured CoTs in interpretability, planning coherence, and execution success, highlighting UML as a more expressive and actionable structured reasoning formalism.
Via

Sep 18, 2025
Abstract:Existing 3D scene generation methods often struggle to model the complex logical dependencies and physical constraints between objects, limiting their ability to adapt to dynamic and realistic environments. We propose CausalStruct, a novel framework that embeds causal reasoning into 3D scene generation. Utilizing large language models (LLMs), We construct causal graphs where nodes represent objects and attributes, while edges encode causal dependencies and physical constraints. CausalStruct iteratively refines the scene layout by enforcing causal order to determine the placement order of objects and applies causal intervention to adjust the spatial configuration according to physics-driven constraints, ensuring consistency with textual descriptions and real-world dynamics. The refined scene causal graph informs subsequent optimization steps, employing a Proportional-Integral-Derivative(PID) controller to iteratively tune object scales and positions. Our method uses text or images to guide object placement and layout in 3D scenes, with 3D Gaussian Splatting and Score Distillation Sampling improving shape accuracy and rendering stability. Extensive experiments show that CausalStruct generates 3D scenes with enhanced logical coherence, realistic spatial interactions, and robust adaptability.
Via

Sep 11, 2025
Abstract:Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.
Via

Sep 09, 2025
Abstract:Acquiring dexterous robotic skills from human video demonstrations remains a significant challenge, largely due to conventional reliance on low-level trajectory replication, which often fails to generalize across varying objects, spatial layouts, and manipulator configurations. To address this limitation, we introduce Graph-Fused Vision-Language-Action (GF-VLA), a unified framework that enables dual-arm robotic systems to perform task-level reasoning and execution directly from RGB-D human demonstrations. GF-VLA employs an information-theoretic approach to extract task-relevant cues, selectively highlighting critical hand-object and object-object interactions. These cues are structured into temporally ordered scene graphs, which are subsequently integrated with a language-conditioned transformer to produce hierarchical behavior trees and interpretable Cartesian motion primitives. To enhance efficiency in bimanual execution, we propose a cross-arm allocation strategy that autonomously determines gripper assignment without requiring explicit geometric modeling. We validate GF-VLA on four dual-arm block assembly benchmarks involving symbolic structure construction and spatial generalization. Empirical results demonstrate that the proposed representation achieves over 95% graph accuracy and 93% subtask segmentation, enabling the language-action planner to generate robust, interpretable task policies. When deployed on a dual-arm robot, these policies attain 94% grasp reliability, 89% placement accuracy, and 90% overall task success across stacking, letter-formation, and geometric reconfiguration tasks, evidencing strong generalization and robustness under diverse spatial and semantic variations.
* This paper is submitted to IEEE IROS 2025 Workshop AIR4S
Via

Sep 03, 2025
Abstract:Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, thereby corresponding to two core capabilities: composition and reasoning. However, with the emerging advances of T2I models in reasoning beyond composition, existing benchmarks reveal clear limitations in providing comprehensive evaluations across and within these capabilities. Meanwhile, these advances also enable models to handle more complex prompts, whereas current benchmarks remain limited to low scene density and simplified one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent complexities of real-world scenarios, we curate each prompt with high compositional density for composition and multi-step inference for reasoning. We also pair each prompt with a checklist that specifies individual yes/no questions to assess each intended element independently to facilitate fine-grained and reliable evaluation. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 27 current T2I models reveal that their composition capability still remains limited in complex high-density scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts. Our project page: https://t2i-corebench.github.io/.
Via

Aug 20, 2025
Abstract:State-of-the-art text-to-image models excel at photorealistic rendering but often struggle to capture the layout and object relationships implied by complex prompts. Scene graphs provide a natural structural prior, yet previous graph-guided approaches have typically relied on heavy GAN or diffusion pipelines, which lag behind modern autoregressive architectures in both speed and fidelity. We introduce SATURN (Structured Arrangement of Triplets for Unified Rendering Networks), a lightweight extension to VAR-CLIP that translates a scene graph into a salience-ordered token sequence, enabling a frozen CLIP-VQ-VAE backbone to interpret graph structure while fine-tuning only the VAR transformer. On the Visual Genome dataset, SATURN reduces FID from 56.45% to 21.62% and increases the Inception Score from 16.03 to 24.78, outperforming prior methods such as SG2IM and SGDiff without requiring extra modules or multi-stage training. Qualitative results further confirm improvements in object count fidelity and spatial relation accuracy, showing that SATURN effectively combines structural awareness with state-of-the-art autoregressive fidelity.
* Accepted to MAPR 2025
Via

Aug 28, 2025
Abstract:We present DrivingGaussian++, an efficient and effective framework for realistic reconstructing and controllable editing of surrounding dynamic autonomous driving scenes. DrivingGaussian++ models the static background using incremental 3D Gaussians and reconstructs moving objects with a composite dynamic Gaussian graph, ensuring accurate positions and occlusions. By integrating a LiDAR prior, it achieves detailed and consistent scene reconstruction, outperforming existing methods in dynamic scene reconstruction and photorealistic surround-view synthesis. DrivingGaussian++ supports training-free controllable editing for dynamic driving scenes, including texture modification, weather simulation, and object manipulation, leveraging multi-view images and depth priors. By integrating large language models (LLMs) and controllable editing, our method can automatically generate dynamic object motion trajectories and enhance their realism during the optimization process. DrivingGaussian++ demonstrates consistent and realistic editing results and generates dynamic multi-view driving scenarios, while significantly enhancing scene diversity. More results and code can be found at the project site: https://xiong-creator.github.io/DrivingGaussian_plus.github.io
Via

Aug 07, 2025
Abstract:Dynamic Scene Graph Generation (DSGG) aims to create a scene graph for each video frame by detecting objects and predicting their relationships. Weakly Supervised DSGG (WS-DSGG) reduces annotation workload by using an unlocalized scene graph from a single frame per video for training. Existing WS-DSGG methods depend on an off-the-shelf external object detector to generate pseudo labels for subsequent DSGG training. However, detectors trained on static, object-centric images struggle in dynamic, relation-aware scenarios required for DSGG, leading to inaccurate localization and low-confidence proposals. To address the challenges posed by external object detectors in WS-DSGG, we propose a Temporal-enhanced Relation-aware Knowledge Transferring (TRKT) method, which leverages knowledge to enhance detection in relation-aware dynamic scenarios. TRKT is built on two key components:(1)Relation-aware knowledge mining: we first employ object and relation class decoders that generate category-specific attention maps to highlight both object regions and interactive areas. Then we propose an Inter-frame Attention Augmentation strategy that exploits optical flow for neighboring frames to enhance the attention maps, making them motion-aware and robust to motion blur. This step yields relation- and motion-aware knowledge mining for WS-DSGG. (2) we introduce a Dual-stream Fusion Module that integrates category-specific attention maps into external detections to refine object localization and boost confidence scores for object proposals. Extensive experiments demonstrate that TRKT achieves state-of-the-art performance on Action Genome dataset. Our code is avaliable at https://github.com/XZPKU/TRKT.git.
Via
